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CHAPITRE IV 2

1. COMPARAISON DE FONCTIONS.

Dans la suite, on supposera que les fonctions sont définies sur un intervalle I sauf peut-étre en un
point zq de I. Ce point xy pourra désigner également +o0o ou —oo (auquel cas I prend la forme [a, +00]
ou |—o0,a], avec a € R).

L’objectif de ce chapitre est de développer un certain nombre de techniques pour étudier une fonction
localement au voisinage de xg.

1.1. Fonctions négligeables.

Soit f et g deux fonctions définies sur I, sauf éventuellement en x¢ qui est un point ou une borne
de I, avec g ne s’annulant pas au voisinage de x.
On dit que la fonction f est négligeable devant la fonction g au voisinage de x si, et seulement

si lim M = 0.
T—To g([,[j)
Onnote f=o0(g)ou f= o (g)etonlit”f est un petit o de g au voisinage de x(".
o T—T0

E 1.1.1. o = 2).
xemple x +(;O (x )
Comme dans le cas des suites, on aurait aussi pu poser comme définition de f = o (g) :

)
f(z) = e(z)g(2),
ou ¢ est une fonction définie au voisinage de g et telle que lim e(x) = 0. Cette définition aurait eu
T—T0

le mérite de ne pas avoir a supposer que la fonction g ne s’annule pas dans un voisinage de xg. Cette
situation est rare en pratique alors on se souviendra seulement que les seules fonctions qui sont o (0)
o

sont les fonctions qui s’annulent au voisinage de xg.

Remarque 1.1.2. Remarquer que la notion de fonction négligeable est locale : elle renseigne sur le
comportement de f et g uniquement au voisinage de zp. Regardons en effet les fonctions f(x) = = et

g(z) = z%. On vient de voir que f = 2 (g9). En revanche c’est l'inverse qui est vraien 0 : g = °, (9)-
B r—

Ainsi, dire qu'une fonction est négligeable devant une autre n’a aucun sens si on ne précise pas le point
autour duquel on effectue la comparaison.

Proposition : Propriétés des négligeables.
Soit f, g et h des fonctions définies sur I, sauf éventuellement en xy qui est un point ou une
borne de I, avec g et h ne s’annulant pas au voisinage de zg.

1. Transitivité : si f = o (g) et g = o (h) alors f = o (h).
o o o

2. Sommes :si f = o (h) et g= o (h) alors f + g = o (h).
o 0 o

1 1
3. Passage a l’inverse : si f = o (g) alors — = o () (avec f ne s’annulant pas au
X0 g xo

voisinage de xg).

Démonstration. A compléter

Proposition : Négligeables et limites.
Soit f et g deux fonctions définies sur I, sauf éventuellement en xy qui est un point ou une borne
de I, avec g ne s’annulant pas au voisinage de xy.

1. f = o (1) si et seulement si le f(z)=0.
xo T—To
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2. Si f=o0(g)et lim g(x) =0 alors lim f(x)=0.

| i) T—x0 T—x0

Démonstration. A compléter

O
Exemple 1.1.3. o 3x+ 2% = wﬁo+oo (w3) car 3x = +(go (x3) et 22 = +(go (x3)
°* 5= x_gLOO (%) car r = +Ooo (x2)
e 22= o ().
z—0

Remarque 1.1.4. On ne peut pas ajouter ou composer les o :
Si f =0 (g) et h= o (k) alors on n’a pas forcément f+h = o (g + k). Par exemple avec f(x) = z,
o ) zo
g(z) = 22, h(z) =z, k(z) = —22 et 29 = +o0.
In(x)

In(z2)

1
De méme, z = 0 (2?) mais In(z)# 0 (In(2?)) car = 5 ne tend pas vers 0 quand x — +o0.
oo oo

1.2. Fonctions équivalentes.

Soit f et g deux fonctions définies sur I, sauf éventuellement en xy qui est un point ou une borne
de I, avec g ne s’annulant pas au voisinage de xg.
x
On dit que f est équivalente a g au voisinage de xg si, et seulement si lim M = 1,
T—T0 g(,’L’)
On note f . gou f~getonlit?”f est équivalente a g au voisinage de xq”.
r—x0 xQ

Comme d’habitude, on peut aussi envisager de donner une définition qui se passe de '’hypothése ou
g ne s’annule pas dans un voisinage de xy mais elle est peu utilisée.
Exemple 1.2.1. 2? + 3z ~ 22
“+o0o
Remarque 1.2.2. La méme remarque que pour la notion de négligeabilité s’applique aussi pour les
fonctions équivalentes (remarque 1.1.2) : c¢’est une notion locale qui n’a de sens qu’au voisinage d'un
point donné.

Proposition : Opérations sur les équivalents.
Soit f, g, h et k des fonctions définies sur I, sauf éventuellement en xy qui est un point ou une
borne de I, avec g et k ne s’annulant pas au voisinage de xg.

1. Produit : si f~g et h~k alors fh~ gk.
x0 x0 x0

2. Quotient : si f~g et h~k (avec h et k ne s’annulant pas au voisinage de x) alors
xo x0
f.e
hzok’
3. Elévation A une puissance réelle : si f et g sont strictement positives au voisinage de
xg et f~ g, alors f¢ ~ g% pour tout o € R;
o )

4. Valeur absolue : si f ~ g alors |f|~|g|.
o xo

Démonstration. A compléter



CHAPITRE IV 4

Proposition : Propriétés des équivalents.
Soit f, g et h des fonctions définies sur I, sauf éventuellement en xy qui est un point ou une
borne de I, avec g et h ne s’annulant pas au voisinage de zg.

1. Transitivité : si f~get g~h alors f~h.
te) xQ o

2. Composition a droite : si f~g et tlir? u(t) = zg alors fou ~gou.
x0 —t0 0

3. Equivalents et négligeables : si f = o (g) et g~h, alors f + g~ h.
xo xo Zo

Autrement dit : dans une somme de fonctions, on peut négliger les termes négligeables !

Démonstration. A compléter

Proposition : Equivalents et limites.
Soit f et g deux fonctions définies sur I, sauf éventuellement en xy qui est un point ou une borne
de I, avec g ne s’annulant pas au voisinage de x.
1. f~1siet seulement si lim f(z) = 1.
0 T—T0

2. Si f~get lim g(x) =/ (réel ou +00) alors f possede une limite en xg et lim f(x) = £.
xo T—x0 T—T0

Démonstration. A compléter

Remarque 1.2.3. On peut multiplier et diviser les équivalents mais :
On n’additionne jamais les équivalents : x + 1 T —T 3+~ —z mais (z + 1) + (—x + 3) n'est
[e.@] [o.@]
pas équivalent a z + (—z) = 0!

2

. PN . 2 2 , .
On ne compose jamais & gauche : 22 +z ~ 22 mais ¢ 7% et ¢* ne sont pas équivalents.

+oo
Les seules fonctions équivalentes a 0 sont les fonctions constantes nulles dans un voisinage de xg.

1.3. Exemples de références et croissances comparées réécrites.

Proposition : Equivalents de polynémes ou de fractions rationnelles en +oo.
e Un polynéme est équivalent en +0o a son monome de plus haut degré.

e Une fraction rationnelle est équivalente en +co au quotient des mondmes de plus haut
degré.

Démonstration. A compléter

(]
Exercice 1.3.1. Déterminer un équivalent des fonctions suivantes en 400 et en 0 : f(x) = 42° — 5a?,
(@) 22 —32° +1
x) = —F——0
g 62 + 2 — 5

Proposition : Croissances comparées.

— B R . a _ b
e [In(z) = 2 (x) | et, plus généralement : Va > 0, b > 0, (In(x))* = 2 ().
e|z= o (e")|et, plus généralement : Va >0,b>0,2°= o (ebx).
T—+00 T—+00

e [In(z) = °, (1) | et, plus généralement : Va > 0, b > 0, (In(z))* = °, ().
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Démonstration. 11 s’agit d’une réécriture des limites connues. O

Proposition : Equivalents usuels.

On a:
In(l+z) ~ x e*—1 ~ x 142)*—1 ~ azr|sia>0
z—0 z—0 z—0
1
En particulier, pour a = = : 14+ —1 ~ —
2 z—0 2

Démonstration. A compléter

Exemple 1

32.2°= o0 (2),23+2z ~ 2z,2= o (2%),2°+22 ~ 23

z—0 x—0 T—+00 T—400

Méthode : Obtention d’équivalents.

Factorisation par le terme prépondérant : le monéme dominant pour les polynémes
et fractions rationnelles en +oo, et plus généralement, en utilisant les croissances com-
parées.

Exploitation de la dérivation : si f est dérivable en xy et f'(z¢) # 0, alors :
f@) = flzo) f(@o)(z — o).

Utilisation d’encadrements : on encadre un quotient de deux fonctions par deux
fonctions de méme limite 1.

Calcul d’une limite finie : si lim f(x) =/¢et £ #0, alors f(z) ~ /.

T—ITQ T—xTQ

FEzxercice 1

.3.3. Donner un équivalent de :

1. f(z) = 2e% + 3y/z — 1% aux voisinages de 0 et +o0;

2. g(z) = 5In(x) + 3e~* — 2'% aux voisinages de 0 et +oo.

FEzxercice 1

.3.4. Donner des équivalents simples au point proposé :

1. f(z) = er —1 en +00, —00, 0

2. g(x) = In(1 — x) aux voisinages de 0 et —co.

3. h(z) = In(x) au voisinage de 1.

Ezercice 1.3.5. 1. Donner un équivalent puis calculer la limite des fonctions suivantes en +oo
A r—1 c. In(z +1) e. (1+ :1:)%
w3422+ +1 In(y/z)
b 322 +4 —e2 ‘ ¢ In(2z + 1)
) In(z) d. z%In(z) — 23 + 1 1

2. Donner un équivalent puis calculer la limite des fonctions suivantes en —oo :

a.

I c.x+vVrl+x+1 e. (14 x?)e”

-1 2 2
b. i g, n@+a7) Y A
x3+$2+$+1 T Q204 +x + 1

3. Donner un équivalent puis calculer les limites des fonctions suivantes en 0 (en 07 et 0~ si
nécessaire)
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1 1 2 =
a z+ - —— . In(1 + z°) e.l e
X T T €T

1 L 4z — 2

- 1 f. —

b. :p+1n(x)+x d. (1+2)= 22 _ 4z

2. DEVELOPPEMENTS LIMITES (D’ORDRE AU PLUS 2).
Ezemple 2.0.1 (Insuffisance de la notion d’équivalent.). Etudier la continuité et la dérivabilité de la
e 1 siz#0
3 siz=0 ‘

fonction f définie par : f(z) =

L’étude de la dérivabilité de la fonction précédente révele que la notion d’équivalent est parfois trop
faible, qu’elle ne donne pas suffisamment d’informations (pour pouvoir par exemple lever certaines
indéterminations lorsqu’on calcule une limite). On peut alors affiner notre étude locale des fonctions,
et faire ce qu’on appelle un développement limité. L’idée est d’approcher une fonction & étudier par
une fonction plus simple, de maniére a ce que 'erreur que 1’on fait dans la substitution est petite au
voisinage d’'un point donné. Un développement limité a ’ordre 1 consiste a remplacer la fonction a
étudier par une fonction affine, tandis qu’a l’ordre 2, on approche par une fonction quadratique.

Remarque 2.0.2. Dans les deux paragraphes suivants, le point xy est un réel, qui ne peut donc pas
étre +00. Nous verrons ensuite comment obtenir des développements limités au voisinage de +oo0.

2.1. Développements limités d’ordre 1 (ECG1).

Soit f une fonction définie au voisinage de xg.
On dit que f admet un développement limité d’ordre 1 en x, s’il existe deux réels a et
b et une fonction e définie au voisinage de z, tels que, au voisinage de xg :

f(x) = a+b(z —xo) + (x — xo)e(),

avec lim e(z) = 0.
T—T0

Théoréme : Lien entre développement limité d’ordre 1 et dérivabilité
Soit f une fonction définie sur un intervalle I et continue en xy élément de I.
f admet un développement limité d’ordre 1 en xg si, et seulement si f est dérivable en xzg, et
on a alors :
f(x) = f(zo) + f'(20)(z — x0) + (z — z0)e()

avec lim e(z) = 0.
T—>T0

Démonstration. A compléter
O

Remarque 2.1.1. En utilisant f(z) =~ f(zo) + f'(x0)(z — x¢) on dit qu’on effectue une ”approximation
affine de f au voisinage de xo”. En effet, la droite d’équation y = f(x) + f'(z0)(z — z¢) est la tangente
a la courbe de f au point xg.

Proposition : Développements limités d’ordre 1 en ;5 = 0 des fonctions de référence.

e’ =14z + zei(x), In(l1+z) =z + zea(x), (14+2)* =1+ ax + ze3(x)

pour a € R, avec lim e1(x) = lim ea(x) = lim e3(x) = 0.
z—0 z—0 z—0

2.2. Développements limités d’ordre 2.
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Soit f une fonction définie sur un intervalle I contenant 0. On dit que f admet un développement
limité (DL) d’ordre 2 au voisinage de 0 s’il existe des réels a, b et ¢ et une fonction ¢ définie
sur [ tels que, pour tout x proche de O :

f(x) = a + bz + cx® + z%e(x)

avec lim e(x) = 0.
z—0

3

1
Ezemple 2.2.1. 1. Montrer que pour tout réel z # —1, —— =1 — 2 + 22 — —
14+ 14+

2. En déduire un développement limité d’ordre 2 de f(x) = au voisinage de 0.

1+zx

Soit f une fonction définie sur un intervalle I contenant xy. On dit que f admet un développementt
limité (DL) d’ordre 2 au voisinage de zg s’il existe des réels a, b et ¢ et une fonction ¢
définie sur I tels que, pour tout x au voisinage de xg :

f(®) = a+blx—=20)+clx—20)? + (x — 20)%e(x)
= —_—
polynome de degré au plus 2 reste négligeable devant (z — )2

avec lim e(z) = 0.
T—T0

Remarque 2.2.2. La fonction f possede un développement limité au voisinage de xg si et seulement si
la fonction h — f(xg + h) possede un développement limité au voisinage de 0. En effet :

f(z) =a+ bz —x) + c(x — z0)? + (x — x0)%e1(2)

si et seulement si
f(xzo + h) = a+ bh + ch? + h*eq(h)
en posant h = x — xg i.e. £ = xg + h, avec lim e1(z) = 0 = lim e2(h) en notant e2(h) = e1(xo + h).
T—T0 h—0

Méthode : Développement limité en zy # 0.
Dans la pratique, on se rameéne toujours a un développement limité au voisinage de 0 en posant
x = x9+ h.

a

K=

Ezemple 2.2.3. Déduire de I'exemple précédent un développement limité de la fonction g(x) =

I’ordre 2 au voisinage de 1.

Théoréeme : Existence d’un développement limité : théoreme de Taylor-Young.
Soit f une fonction de classe C? au voisinage de zg. Alors f admet un développement limité
d’ordre 2 au voisinage de xg, et I'on a :

£(@) = f(m0) + @) (& — o) + 5./ (z0) (@ — 70)* + (z — 0)Pe(a)
avec xligcl e(z) =0.
Si zg = 0, cela donne :

£() = F0) + f1(0)z + 3" (0)2? + ae(a)

avec lim e(x) = 0.
z—0
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Démonstration. Admis. O

Théoreme : Unicité du développement limité.
Soit f une fonction de classe C? qui admet donc un développement limité d’ordre 2 au voisinage
de xg. Ce développement limité est unique. Plus précisément, si f s’écrit, au voisinage de x,

f(x)=a+b(zx —x0) + c(z — aL‘o)2 + (x— xo)Qs(x) avec xlg]grcl e(z) =0,

Alors on a :

o a= f(z0);
e b = f'(x0), et la tangente a la courbe de f au voisinage de xy admet pour équation
y=a+b(x—xp);

1
e ¢ = —f"(xg) : si ¢ > 0, alors la courbe est localement au-dessus de sa tangente, et si ¢ < 0,

la courbe est localement en-dessous de sa tangente.

Démonstration. A compléter. a

Remarque 2.2.4. Attention! Ce n’est pas parce qu’une fonction admet un développement limité a
I'ordre 2 qu'elle est nécessairement de classe C2, ni méme dérivable deux fois. Il ne faut donc pas
utiliser (& tort) une version de la réciproque du théoreme de Taylor-Young et ’énoncé précédent ne
marche que si la fonction est supposée de classe C2.

Proposition : Exemples de référence.
Développements limités d’ordre 2 en g =0 :
2
x
(1) et = 1~|—:1:+?+:v251(:1:)
2
2 2
(2) In(l+z) = x—?—i—w e2(x)
@ ala—1) , 2
(3) I+ x)* = 1+am+T:}c + x“e3(x) pour a € R
avec lim g;(z) = 0 pour ¢ € {1,2,3}.
z—0
Démonstration. A compléter. O

Remarque 2.2.5. On déduit de la proposition précédente, en remplagant = par —zx (composition
a droite), d’autre formules de développement limité pour des fonctions associées aux fonctions de
référence :

2

(4) e = 1-ax+ % + 2%y ()
TN
(5) In(l—z) = —z— 5 + z%e5(x)
-1
(6) (1—-2) = 1—ax+ Maﬂ + 2%g6(z) pour @ € R

2

-1
En particulier, pour @ = —1 ou -5
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(7) 141_3? = 1—x+2®+2%(2)
(8) ﬁ = 1+z+ 2%+ 225(2)
(9) 11+ _ = 1- %x + gxﬁ + ae(2)
(10) ! = 1+ lx + §£L‘2 + 22e19(x)

1—=x 2 8

Ezemple 2.2.6. Retrouver le développement limité de In au voisinage de e a ’aide du développement
limité de x — In(1 + x) au voisinage de 0.

7

Méthode : Obtention du développement limité.
e Si l'on parvient a écrire une égalité f(x) = P(z) + g(z) avec P un polynome (de degré
au plus 2) et lim 9(x) 5
T—xo (X — ,%'0)
voisinage de xg.

= 0, alors on a le développement limité a ’ordre 2 de f au

e On utilise une formule de développement limité d’'une des trois fonctions de référence.

e Si la fonction est de classe C2, on calcule f(z¢), f'(zo) puis f”(wo) et on applique la
formule de Taylor-Young.

Ezemple 2.2.7. Soit f(x) = 1+ 2z + 322 + (z — 3)®In(x), pour x > 0. Donner le développement limité
de f al’ordre 2 au voisinage de 3.

Ezemple 2.2.8. Soit f(z) = In(x). Montrer que f est de classe C? sur ]0;+oo| puis donner son
développement limité d’ordre 2 au voisinage de e a l'aide de la formule de Taylor-Young.

Ezercice 2.2.9. Calculer les développements limités a 'ordre 2 suivants, puis préciser la limite de la
fonction au point considéré, et un équivalent simple au voisinage du point :

1. f(z) =€e"In(l — 2z) en 0. 3. flx)=V1+ax—+y1—xen0.
2. f(x) = 5_13x en 0. 4. f(x) = 1?}? en 1.

Ezercice 2.2.10. Calculer les limites suivantes, préciser un équivalent de la fonction au point considéré :
. In(l+2)—=
m—— )

1.1
x1—>0 1‘2
In(1-—2 2x_1-9
2. Jim ML 20) + e i
x—0 x

Exercice type concours.

Soit f définie par : f(0) =1 et f(x) siz>0.

x

T I(l+)

1. Montrer que f est continue sur [0; +00].

2. Montrer que f est de classe C' sur ]0; +oo].

3. Donner le développement limité & l'ordre 2 en 0 de In(z + 1) — %—i-l En déduire un
équivalent de f’(x) au voisinage de 0.

4. Prouver que f est de classe C! sur [0; +ool.
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2.3. Développements limités au voisinage de +co. On définit dans ce paragraphe le développement
limité d’une fonction au point zg = 400. Le cas du point g = —oo est similaire.

Soit f une fonction définie sur un intervalle |a, +o0o] avec @ € R ou a = —oo. Dans ce cas, on dit
que f est définie au voisinage de +oo.

Soit f une fonction définie au voisinage de +o00. On considére la fonction u définie de la maniere

suivante
)
urx— fl—].
x
Ecrivons le développement limité de u en O :
u(z) =a+br+cx?+ o (:1:2)
z—0
Alors on vérifie immédiatement qu’au voisinage de +o00, on a
b ¢ 2
= =4 — o .
f(x) a+x+a:2 +l,_>0(x )

C’est le développement limité de f a 'ordre 2 au voisinage de +oc.

Les deux paragraphes précédents s’appliquent donc pour des développements limités en +oo puis-
qu’il s’agit de se ramener a un développement limité en 0.

2.4. Asymptotes obliques a ’infini.

On dit que la droite d’équation y = ax+b est asymptote oblique a la courbe de f si, et seulement
si lim f(x)— (ax+b)=0.

T—+00

Remarque 2.4.1. En abusant 1égérement des définitions, nous dirons que f admet comme développement
limité au voisinage de 400 I'expression suivante

f(:n):ax—i—b—i—%%— o <1>

T—00 \ T

Cette écriture n’est pas a proprement parler un développement limité puisque ax diverge vers + ou —
I'infini lorsque x tend vers +oo. A la section suivante, nous expliquerons quelle est la nature de cette
expression. Ici, nous nous contenterons de faire comme s’il s’agissait d’un vrai développement limité.

Si, au voisinage de 400, ona: f(x) = aac—l—b—%%—l—@ avec lgrfoo e(z) = 0, alors la droite d’équation
y = ax + b est asymptote oblique a la courbe de f au voisinage de +oc.
e Si c <0, la courbe est localement en-dessous de son asymptote,
e Sic > 0, la courbe est localement au-dessus son asymptote,

L’étude est similaire en —oo, mais les positions relatives sont inversées (a cause du signe de %)

Ezxercice 2.4.2. Soit f(z) = x¢/1 + % Déterminer le développement limité a l’ordre 2 de f au voisinage

de +00 et en déduire I'existence d’une asymptote oblique pour la courbe de f. Préciser la position de
la courbe par rapport a son asymptote.

Exercice type concours.
Soit n € N* et f, la fonction définie par f,(z) = ze™= pour tout x > 0.

1. Donner le développement limité a I’ordre 2 de e" lorsque w est au voisinage de 0.

2. En déduire qu’au voisinage de +00, on a : fp(z) =z —n+ n + o (l)
2r xz—4oco T
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3. En déduire un équivalent de f,(x), puis la limite de f,(x) et celle de f,(x) — = quand =
tend vers —+oo.

3. REMARQUES ET CoMPLEMENTS (HORS PROGRAMME).

3.1. Développements limités d’ordres supérieurs.

Bien souvent dans la pratique, un développement limité a I’ordre 2 est une information tres précieuse,
qui donne suffisamment d’informations locales pour une étude fine de la fonction. Dans certains cas
cependant, on peut avoir besoin d’une information encore plus précise.

2
o . S P
Ezemple 3.1.1. Chercher la limite en 0 de la fonction f(z) = 633732

Dans 'exemple précédent, le développement limité a 'ordre 2 en 0 de la fonction exponentielle ne
permet pas de calculer la limite : il faudrait encore pouvoir comparer le reste du développement limité
a la fonction 22 en 0. C’est ce qu’on appelle faire un développement limité & I'ordre 3. En fait, on peut

envisager de faire des développements limités a tous les ordres, pourvu que la fonction le permette.

Soit f une fonction définie au voisinage d’un point xg et soit k un entier positif. On dit que f
admet un développement limité a 'ordre k en xg s’il existe des réels ag, aq, - - - , ax tels que

f(x) = ap + a1(x — z0) + az(x — 20)% + - - + ar(@ — 20)* + (x — 20)*e(x)

avec lim e(z) = 0.
T—T0

Comme dans tout ce qui précede, I'idée consiste encore a approcher la fonction f par une fonction
plus simple (cette fois-ci une fonction polynéme d’ordre k, et non plus un polynéme de degré 1 ou 2)
et de controler I'erreur au voisinage de xg.

Comme a 'ordre 1 ou 2, il est facile d’obtenir un développement limité d’une fonction suffisamment
dérivable a I'aide de ses dérivées au point xg.

Théoreme : Formule de Taylor-Young généralisée (hors programme).
Soit k un entier positif et soit f une fonction définie et de classe C* au voisinage de xq. Alors

" (g k T
£(&) = F@o) + £ @o)(w — o) + L0 @ — a2 o 4 L (o gt 4 (@ ahe()
avec lig&lo e(z) = 0.

3.2. Echelles de comparaisons.
Que faut-il penser d’une expression de la forme

fl@)=vrt+z+ o (2)?

Ce n’est pas un développement limité car x — +/z ne fait pas partie des fonctions que 1’on peut utiliser
pour approcher f. D’autre part, de cette relation, on déduit que

f@) ~ V.

mais elle est aussi plus précise qu’un simple équivalent puisqu’elle donne une information sur le reste
f(z) - Va.

On constate alors qu’un développement limité dépend d’une base de données (souvent appelée
échelle de comparaison) de fonctions de référence et qu’on utilise ces fonctions (et ces fonctions seule-
ment) pour approcher la fonction a étudier.

Dans le programme de ECG2, nous avons choisi comme base de données les fonctions polynémes
d’ordre 2 puisque c’est ce type de fonctions qui sont données par le théoreme de Taylor-Young. Mais
c’est un choix arbitraire et d’autres options sont possibles, comme par exemple intégrer x — /x dans
notre échelle de comparaison.
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3.3. Développements asymptotiques.

Dans l'idée du paragraphe précédent, on peut méme intégrer dans nos échelles de comparaison des
fonctions qui ne sont pas définies en xg, par exemple qui tendent vers t+oo lorsque x tend vers xg.
Dans ce cas, on produirait des expressions de la forme

f(a:):%—i-l—i-x—kxgo(x).

Ce type d’expression nous est apparue naturellement pour xg = 400 car dans ce cas,

f(w):aac—i-b—i-%—i— o <1>

r—00 \ &

n’est pas un développement limité. On appelle une telle approximation un développement asympto-
tique f en 0. Un développement asymptotique est capable de renseigner a la fois sur le comportement
local de la fonction en zg, comme dans le cas d’'un développement limité, mais aussi sur sa vitesse de
divergence a I'infini comme c’est le cas dans I’exemple précédent.

4. SUJETS D’ANNALES EN LIEN AVEC CE CHAPITRE.

Tres peu de sujets d’annales sont en lien direct avec ce chapitre. En fait, on trouve souvent aux
concours des exercices d’analyse de fonctions, mais il s’agit plutot de manipuler des concepts de
premiere année : fonctions continues, de classe C!, C?, etc.

Les développements limités de fonctions sont utilisés fréquemment pour calculer des limites en un
point fini ou infini, ce qui est tres souvent le cas dans ces exercices. Par exemple, lorsque la dérivée
en un point litigieux est a chercher (un point au bord de I’ensemble de définition ou pour lequel la
fonction est définie de maniere différente), il faut calculer la limite du taux d’accroissement, et bien
souvent on s’aide d’un développement limité pour calculer cette limite.

Faire un développement limité est rarement un objectif en tant que tel, mais plutét un outil.
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