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1. Comparaison de fonctions.

Dans la suite, on supposera que les fonctions sont définies sur un intervalle I sauf peut-être en un
point x0 de I. Ce point x0 pourra désigner également +∞ ou −∞ (auquel cas I prend la forme [a,+∞[
ou ]−∞, a], avec a ∈ R).

L’objectif de ce chapitre est de développer un certain nombre de techniques pour étudier une fonction
localement au voisinage de x0.

1.1. Fonctions négligeables.

Soit f et g deux fonctions définies sur I, sauf éventuellement en x0 qui est un point ou une borne
de I, avec g ne s’annulant pas au voisinage de x0.

On dit que la fonction f est négligeable devant la fonction g au voisinage de x0 si, et seulement

si lim
x→x0

f(x)

g(x)
= 0.

On note f = o
x0

(g) ou f = o
x→x0

(g) et on lit ”f est un petit o de g au voisinage de x0”.

Définition : Fonctions négligeables.

Exemple 1.1.1. x = o
+∞

(
x2
)
.

Comme dans le cas des suites, on aurait aussi pu poser comme définition de f = o
x0

(g) :

f(x) = ε(x)g(x),

où ε est une fonction définie au voisinage de x0 et telle que lim
x→x0

ε(x) = 0. Cette définition aurait eu

le mérite de ne pas avoir à supposer que la fonction g ne s’annule pas dans un voisinage de x0. Cette
situation est rare en pratique alors on se souviendra seulement que les seules fonctions qui sont o

x0
(0)

sont les fonctions qui s’annulent au voisinage de x0.

Remarque 1.1.2. Remarquer que la notion de fonction négligeable est locale : elle renseigne sur le
comportement de f et g uniquement au voisinage de x0. Regardons en effet les fonctions f(x) = x et
g(x) = x2. On vient de voir que f = o

+∞
(g). En revanche c’est l’inverse qui est vrai en 0 : g = o

x→0
(g).

Ainsi, dire qu’une fonction est négligeable devant une autre n’a aucun sens si on ne précise pas le point
autour duquel on effectue la comparaison.

Soit f , g et h des fonctions définies sur I, sauf éventuellement en x0 qui est un point ou une
borne de I, avec g et h ne s’annulant pas au voisinage de x0.

1. Transitivité : si f = o
x0

(g) et g = o
x0

(h) alors f = o
x0

(h).

2. Sommes : si f = o
x0

(h) et g = o
x0

(h) alors f + g = o
x0

(h).

3. Passage à l’inverse : si f = o
x0

(g) alors
1

g
= o

x0

(
1

f

)
(avec f ne s’annulant pas au

voisinage de x0).

Proposition : Propriétés des négligeables.

Démonstration. À compléter

�

Soit f et g deux fonctions définies sur I, sauf éventuellement en x0 qui est un point ou une borne
de I, avec g ne s’annulant pas au voisinage de x0.

1. f = o
x0

(1) si et seulement si lim
x→x0

f(x) = 0.

Proposition : Négligeables et limites.
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2. Si f = o
x0

(g) et lim
x→x0

g(x) = 0 alors lim
x→x0

f(x) = 0.

Démonstration. À compléter

�

Exemple 1.1.3. � 3x+ x2 = o
x→+∞

(
x3
)

car 3x = o
+∞

(
x3
)

et x2 = o
+∞

(
x3
)
.

�

1

x2
= o

x→+∞

(
1
x

)
car x = o

+∞

(
x2
)
.

� x2 = o
x→0

(x).

Remarque 1.1.4. On ne peut pas ajouter ou composer les o :
Si f = o

x0
(g) et h = o

x0
(k) alors on n’a pas forcément f +h = o

x0
(g + k). Par exemple avec f(x) = x,

g(x) = x2, h(x) = x, k(x) = −x2 et x0 = +∞.

De même, x = o
+∞

(
x2
)

mais ln(x)6= o
+∞

(
ln(x2)

)
car

ln(x)

ln(x2)
=

1

2
ne tend pas vers 0 quand x→ +∞.

1.2. Fonctions équivalentes.

Soit f et g deux fonctions définies sur I, sauf éventuellement en x0 qui est un point ou une borne
de I, avec g ne s’annulant pas au voisinage de x0.

On dit que f est équivalente à g au voisinage de x0 si, et seulement si lim
x→x0

f(x)

g(x)
= 1.

On note f ∼
x→x0

g ou f ∼
x0
g et on lit ”f est équivalente à g au voisinage de x0”.

Définition : Fonctions équivalentes.

Comme d’habitude, on peut aussi envisager de donner une définition qui se passe de l’hypothèse où
g ne s’annule pas dans un voisinage de x0 mais elle est peu utilisée.

Exemple 1.2.1. x2 + 3x ∼
+∞

x2.

Remarque 1.2.2. La même remarque que pour la notion de négligeabilité s’applique aussi pour les
fonctions équivalentes (remarque 1.1.2) : c’est une notion locale qui n’a de sens qu’au voisinage d’un
point donné.

Soit f , g, h et k des fonctions définies sur I, sauf éventuellement en x0 qui est un point ou une
borne de I, avec g et k ne s’annulant pas au voisinage de x0.

1. Produit : si f ∼
x0
g et h∼

x0
k alors fh∼

x0
gk.

2. Quotient : si f ∼
x0
g et h∼

x0
k (avec h et k ne s’annulant pas au voisinage de x0) alors

f

h
∼
x0

g

k
.

3. Élévation à une puissance réelle : si f et g sont strictement positives au voisinage de
x0 et f ∼

x0
g, alors fα∼

x0
gα pour tout α ∈ R ;

4. Valeur absolue : si f ∼
x0
g alors |f | ∼

x0
|g|.

Proposition : Opérations sur les équivalents.

Démonstration. À compléter

�
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Soit f , g et h des fonctions définies sur I, sauf éventuellement en x0 qui est un point ou une
borne de I, avec g et h ne s’annulant pas au voisinage de x0.

1. Transitivité : si f ∼
x0
g et g∼

x0
h alors f ∼

x0
h.

2. Composition à droite : si f ∼
x0
g et lim

t→t0
u(t) = x0 alors f ◦ u∼

t0
g ◦ u.

3. Équivalents et négligeables : si f = o
x0

(g) et g∼
x0
h, alors f + g∼

x0
h.

Autrement dit : dans une somme de fonctions, on peut négliger les termes négligeables !

Proposition : Propriétés des équivalents.

Démonstration. À compléter

�

Soit f et g deux fonctions définies sur I, sauf éventuellement en x0 qui est un point ou une borne
de I, avec g ne s’annulant pas au voisinage de x0.

1. f ∼
x0

1 si et seulement si lim
x→x0

f(x) = 1.

2. Si f ∼
x0
g et lim

x→x0
g(x) = ` (réel ou ±∞) alors f possède une limite en x0 et lim

x→x0
f(x) = `.

Proposition : Équivalents et limites.

Démonstration. À compléter

�

Remarque 1.2.3. On peut multiplier et diviser les équivalents mais :
On n’additionne jamais les équivalents : x + 1 ∼

+∞
x, −x + 3 ∼

+∞
−x mais (x + 1) + (−x + 3) n’est

pas équivalent à x+ (−x) = 0 !

On ne compose jamais à gauche : x2 + x ∼
+∞

x2 mais ex
2+x et ex

2
ne sont pas équivalents.

Les seules fonctions équivalentes à 0 sont les fonctions constantes nulles dans un voisinage de x0.

1.3. Exemples de références et croissances comparées réécrites.

� Un polynôme est équivalent en ±∞ à son monôme de plus haut degré.

� Une fraction rationnelle est équivalente en ±∞ au quotient des monômes de plus haut
degré.

Proposition : Équivalents de polynômes ou de fractions rationnelles en ±∞.

Démonstration. À compléter

�

Exercice 1.3.1. Déterminer un équivalent des fonctions suivantes en ±∞ et en 0 : f(x) = 4x5 − 5x4,

g(x) =
x2 − 3x5 + 1

6x3 + x− 5

� ln(x) = o
x→+∞

(x) et, plus généralement : ∀a > 0, b > 0, (ln(x))a = o
x→+∞

(
xb
)
.

� x = o
x→+∞

(ex) et, plus généralement : ∀a > 0, b > 0, xa = o
x→+∞

(
ebx
)
.

� ln(x) = o
x→0

(
1
x

)
et, plus généralement : ∀a > 0, b > 0, (ln(x))a = o

x→0

(
1
xb

)
.

Proposition : Croissances comparées.
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Démonstration. Il s’agit d’une réécriture des limites connues. �

On a :
ln(1 + x) ∼

x→0
x ex − 1 ∼

x→0
x (1 + x)α − 1 ∼

x→0
αx si α > 0

En particulier, pour α =
1

2
:
√

1 + x− 1 ∼
x→0

x

2

Proposition : Équivalents usuels.

Démonstration. À compléter

�

Exemple 1.3.2. x3 = o
x→0

(x), x3 + 2x ∼
x→0

2x, x = o
x→+∞

(
x3
)
, x3 + 2x ∼

x→+∞
x3

� Factorisation par le terme prépondérant : le monôme dominant pour les polynômes
et fractions rationnelles en ±∞, et plus généralement, en utilisant les croissances com-
parées.

� Exploitation de la dérivation : si f est dérivable en x0 et f ′(x0) 6= 0, alors :

f(x)− f(x0) ∼
x→x0

f ′(x0)(x− x0).

� Utilisation d’encadrements : on encadre un quotient de deux fonctions par deux
fonctions de même limite 1.

� Calcul d’une limite finie : si lim
x→x0

f(x) = ` et ` 6= 0, alors f(x) ∼
x→x0

`.

Méthode : Obtention d’équivalents.

Exercice 1.3.3. Donner un équivalent de :

1. f(x) = 2ex + 3
√
x− x100 aux voisinages de 0 et +∞ ;

2. g(x) = 5 ln(x) + 3e−x − x100 aux voisinages de 0 et +∞.

Exercice 1.3.4. Donner des équivalents simples au point proposé :

1. f(x) = e
1
x − 1 en +∞, −∞, 0

2. g(x) = ln(1− x) aux voisinages de 0 et −∞.

3. h(x) = ln(x) au voisinage de 1.

Exercice 1.3.5. 1. Donner un équivalent puis calculer la limite des fonctions suivantes en +∞

a.
x− 1

x3 + x2 + x+ 1

b.
3x2 + 4− e

x
2

ln(x)

c.
ln(x+ 1)

ln(
√
x)

d. x2 ln(x)− x3 + 1

e. (1 + x)
1
x

f.
ln(2x+ 1)

x+ 1

2. Donner un équivalent puis calculer la limite des fonctions suivantes en −∞ :

a. x23 − x17

b.
x− 1

x3 + x2 + x+ 1

c. x+
√
x2 + x+ 1

d.
ln(1 + x2)

x

e. (1 + x2)ex

f.

√
x2

2x2 + x+ 1

3. Donner un équivalent puis calculer les limites des fonctions suivantes en 0 (en 0+ et 0− si
nécessaire)
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a. x+
1

x
− 1

x2

b. x+ ln(x) +
1

x

c.
ln(1 + x2)

x

d. (1 + x)
1
x

e.
1− e−x

x

f.
4x− 2

x2 − 4x

2. Développements limités (d’ordre au plus 2).

Exemple 2.0.1 (Insuffisance de la notion d’équivalent.). Étudier la continuité et la dérivabilité de la

fonction f définie par : f(x) =


e3x − 1

x
si x 6= 0

3 si x = 0
.

L’étude de la dérivabilité de la fonction précédente révèle que la notion d’équivalent est parfois trop
faible, qu’elle ne donne pas suffisamment d’informations (pour pouvoir par exemple lever certaines
indéterminations lorsqu’on calcule une limite). On peut alors affiner notre étude locale des fonctions,
et faire ce qu’on appelle un développement limité. L’idée est d’approcher une fonction à étudier par
une fonction plus simple, de manière à ce que l’erreur que l’on fait dans la substitution est petite au
voisinage d’un point donné. Un développement limité à l’ordre 1 consiste à remplacer la fonction à
étudier par une fonction affine, tandis qu’à l’ordre 2, on approche par une fonction quadratique.

Remarque 2.0.2. Dans les deux paragraphes suivants, le point x0 est un réel, qui ne peut donc pas
être ±∞. Nous verrons ensuite comment obtenir des développements limités au voisinage de ±∞.

2.1. Développements limités d’ordre 1 (ECG1).

Soit f une fonction définie au voisinage de x0.
On dit que f admet un développement limité d’ordre 1 en x0, s’il existe deux réels a et

b et une fonction ε définie au voisinage de x0, tels que, au voisinage de x0 :

f(x) = a+ b(x− x0) + (x− x0)ε(x),

avec lim
x→x0

ε(x) = 0.

Définition : Développement limité d’ordre 1.

Soit f une fonction définie sur un intervalle I et continue en x0 élément de I.
f admet un développement limité d’ordre 1 en x0 si, et seulement si f est dérivable en x0, et

on a alors :
f(x) = f(x0) + f ′(x0)(x− x0) + (x− x0)ε(x)

avec lim
x→x0

ε(x) = 0.

Théorème : Lien entre développement limité d’ordre 1 et dérivabilité

Démonstration. À compléter

�

Remarque 2.1.1. En utilisant f(x) ≈ f(x0) + f ′(x0)(x− x0) on dit qu’on effectue une ”approximation
affine de f au voisinage de x0”. En effet, la droite d’équation y = f(x0)+f ′(x0)(x−x0) est la tangente
à la courbe de f au point x0.

ex = 1 + x+ xε1(x), ln(1 + x) = x+ xε2(x), (1 + x)α = 1 + αx+ xε3(x)

pour α ∈ R, avec lim
x→0

ε1(x) = lim
x→0

ε2(x) = lim
x→0

ε3(x) = 0.

Proposition : Développements limités d’ordre 1 en x0 = 0 des fonctions de référence.

2.2. Développements limités d’ordre 2.
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Soit f une fonction définie sur un intervalle I contenant 0. On dit que f admet un développement
limité (DL) d’ordre 2 au voisinage de 0 s’il existe des réels a, b et c et une fonction ε définie
sur I tels que, pour tout x proche de 0 :

f(x) = a+ bx+ cx2 + x2ε(x)

avec lim
x→0

ε(x) = 0.

Définition : Développement limité au voisinage de 0.

Exemple 2.2.1. 1. Montrer que pour tout réel x 6= −1,
1

1 + x
= 1− x+ x2 − x3

1 + x
.

2. En déduire un développement limité d’ordre 2 de f(x) =
1

1 + x
au voisinage de 0.

Soit f une fonction définie sur un intervalle I contenant x0. On dit que f admet un développement
limité (DL) d’ordre 2 au voisinage de x0 s’il existe des réels a, b et c et une fonction ε
définie sur I tels que, pour tout x au voisinage de x0 :

f(x) = a+ b(x− x0) + c(x− x0)2︸ ︷︷ ︸
polynôme de degré au plus 2

+ (x− x0)2ε(x)︸ ︷︷ ︸
reste négligeable devant (x− x0)2

avec lim
x→x0

ε(x) = 0.

Définition : Développement limité au voisinage de x0.

Remarque 2.2.2. La fonction f possède un développement limité au voisinage de x0 si et seulement si
la fonction h 7→ f(x0 + h) possède un développement limité au voisinage de 0. En effet :

f(x) = a+ b(x− x0) + c(x− x0)2 + (x− x0)2ε1(x)

si et seulement si
f(x0 + h) = a+ bh+ ch2 + h2ε2(h)

en posant h = x− x0 i.e. x = x0 + h, avec lim
x→x0

ε1(x) = 0 = lim
h→0

ε2(h) en notant ε2(h) = ε1(x0 + h).

Dans la pratique, on se ramène toujours à un développement limité au voisinage de 0 en posant
x = x0 + h.

Méthode : Développement limité en x0 6= 0.

Exemple 2.2.3. Déduire de l’exemple précédent un développement limité de la fonction g(x) =
1

x
à

l’ordre 2 au voisinage de 1.

Soit f une fonction de classe C2 au voisinage de x0. Alors f admet un développement limité
d’ordre 2 au voisinage de x0, et l’on a :

f(x) = f(x0) + f ′(x0)(x− x0) +
1

2
f ′′(x0)(x− x0)2 + (x− x0)2ε(x)

avec lim
x→x0

ε(x) = 0.

Si x0 = 0, cela donne :

f(x) = f(0) + f ′(0)x+
1

2
f ′′(0)x2 + x2ε(x)

avec lim
x→0

ε(x) = 0.

Théorème : Existence d’un développement limité : théorème de Taylor-Young.
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Démonstration. Admis. �

Soit f une fonction de classe C2 qui admet donc un développement limité d’ordre 2 au voisinage
de x0. Ce développement limité est unique. Plus précisément, si f s’écrit, au voisinage de x0,

f(x) = a+ b(x− x0) + c(x− x0)2 + (x− x0)2ε(x) avec lim
x→x0

ε(x) = 0,

Alors on a :

� a = f(x0) ;

� b = f ′(x0), et la tangente à la courbe de f au voisinage de x0 admet pour équation
y = a+ b(x− x0) ;

� c =
1

2
f ′′(x0) : si c > 0, alors la courbe est localement au-dessus de sa tangente, et si c < 0,

la courbe est localement en-dessous de sa tangente.

Théorème : Unicité du développement limité.

Démonstration. À compléter. �

Remarque 2.2.4. Attention ! Ce n’est pas parce qu’une fonction admet un développement limité à
l’ordre 2 qu’elle est nécessairement de classe C2, ni même dérivable deux fois. Il ne faut donc pas
utiliser (à tort) une version de la réciproque du théorème de Taylor-Young et l’énoncé précédent ne
marche que si la fonction est supposée de classe C2.

Développements limités d’ordre 2 en x0 = 0 :

ex = 1 + x+
x2

2
+ x2ε1(x)(1)

ln(1 + x) = x− x2

2
+ x2ε2(x)(2)

(1 + x)α = 1 + αx+
α(α− 1)

2
x2 + x2ε3(x) pour α ∈ R(3)

avec lim
x→0

εi(x) = 0 pour i ∈ {1, 2, 3}.

Proposition : Exemples de référence.

Démonstration. À compléter. �

Remarque 2.2.5. On déduit de la proposition précédente, en remplaçant x par −x (composition
à droite), d’autre formules de développement limité pour des fonctions associées aux fonctions de
référence :

e−x = 1− x+
x2

2
+ x2ε4(x)(4)

ln(1− x) = −x− x2

2
+ x2ε5(x)(5)

(1− x)α = 1− αx+
α(α− 1)

2
x2 + x2ε6(x) pour α ∈ R(6)

En particulier, pour α = −1 ou
−1

2
:
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1

1 + x
= 1− x+ x2 + x2ε7(x)(7)

1

1− x
= 1 + x+ x2 + x2ε8(x)(8)

1√
1 + x

= 1− 1

2
x+

3

8
x2 + x2ε9(x)(9)

1√
1− x

= 1 +
1

2
x+

3

8
x2 + x2ε10(x)(10)

Exemple 2.2.6. Retrouver le développement limité de ln au voisinage de e à l’aide du développement
limité de x 7→ ln(1 + x) au voisinage de 0.

� Si l’on parvient à écrire une égalité f(x) = P (x) + g(x) avec P un polynôme (de degré

au plus 2) et lim
x→x0

g(x)

(x− x0)2
= 0, alors on a le développement limité à l’ordre 2 de f au

voisinage de x0.

� On utilise une formule de développement limité d’une des trois fonctions de référence.

� Si la fonction est de classe C2, on calcule f(x0), f ′(x0) puis f ′′(x0) et on applique la
formule de Taylor-Young.

Méthode : Obtention du développement limité.

Exemple 2.2.7. Soit f(x) = 1 + 2x+ 3x2 + (x− 3)3 ln(x), pour x > 0. Donner le développement limité
de f à l’ordre 2 au voisinage de 3.

Exemple 2.2.8. Soit f(x) = ln(x). Montrer que f est de classe C2 sur ]0; +∞[ puis donner son
développement limité d’ordre 2 au voisinage de e à l’aide de la formule de Taylor-Young.

Exercice 2.2.9. Calculer les développements limités à l’ordre 2 suivants, puis préciser la limite de la
fonction au point considéré, et un équivalent simple au voisinage du point :

1. f(x) = ex ln(1− 2x) en 0.

2. f(x) =
1

5− 3x
en 0.

3. f(x) =
√

1 + x−
√

1− x en 0.

4. f(x) =
ln(x)√
x

en 1.

Exercice 2.2.10. Calculer les limites suivantes, préciser un équivalent de la fonction au point considéré :

1. lim
x→0

ln(1 + x)− x
x2

2. lim
x→0

ln(1− 2x) + e2x − 1− 2x

x2

Soit f définie par : f(0) = 1 et f(x) =
x

ln(1 + x)
si x > 0.

1. Montrer que f est continue sur [0; +∞[.

2. Montrer que f est de classe C1 sur ]0; +∞[.

3. Donner le développement limité à l’ordre 2 en 0 de ln(x + 1) − x

x+ 1
. En déduire un

équivalent de f ′(x) au voisinage de 0.

4. Prouver que f est de classe C1 sur [0; +∞[.

Exercice type concours.
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2.3. Développements limités au voisinage de ±∞. On définit dans ce paragraphe le développement
limité d’une fonction au point x0 = +∞. Le cas du point x0 = −∞ est similaire.

Soit f une fonction définie sur un intervalle ]a,+∞[ avec a ∈ R ou a = −∞. Dans ce cas, on dit
que f est définie au voisinage de +∞.

Soit f une fonction définie au voisinage de +∞. On considère la fonction u définie de la manière
suivante

u : x 7→ f

(
1

x

)
.

Écrivons le développement limité de u en 0 :

u(x) = a+ bx+ cx2 + o
x→0

(
x2
)
.

Alors on vérifie immédiatement qu’au voisinage de +∞, on a

f(x) = a+
b

x
+

c

x2
+ o
x→0

(
x2
)
.

C’est le développement limité de f à l’ordre 2 au voisinage de +∞.

Définition : Développement limité de f en +∞.

Les deux paragraphes précédents s’appliquent donc pour des développements limités en +∞ puis-
qu’il s’agit de se ramener à un développement limité en 0.

2.4. Asymptotes obliques à l’infini.

On dit que la droite d’équation y = ax+b est asymptote oblique à la courbe de f si, et seulement
si lim
x→+∞

f(x)− (ax+ b) = 0.

Définition : Asymptote oblique.

Remarque 2.4.1. En abusant légèrement des définitions, nous dirons que f admet comme développement
limité au voisinage de +∞ l’expression suivante

f(x) = ax+ b+
c

x
+ o
x→∞

(
1

x

)
.

Cette écriture n’est pas à proprement parler un développement limité puisque ax diverge vers + ou −
l’infini lorsque x tend vers +∞. À la section suivante, nous expliquerons quelle est la nature de cette
expression. Ici, nous nous contenterons de faire comme s’il s’agissait d’un vrai développement limité.

Si, au voisinage de +∞, on a : f(x) = ax+b+ c
x+ ε(x)

x avec lim
x→+∞

ε(x) = 0, alors la droite d’équation

y = ax+ b est asymptote oblique à la courbe de f au voisinage de +∞.

� Si c < 0, la courbe est localement en-dessous de son asymptote,

� Si c > 0, la courbe est localement au-dessus son asymptote,

L’étude est similaire en −∞, mais les positions relatives sont inversées (à cause du signe de 1
x).

Exercice 2.4.2. Soit f(x) = x
√

1 + 1
x . Déterminer le développement limité à l’ordre 2 de f au voisinage

de +∞ et en déduire l’existence d’une asymptote oblique pour la courbe de f . Préciser la position de
la courbe par rapport à son asymptote.

Soit n ∈ N∗ et fn la fonction définie par fn(x) = xe−
n
x pour tout x > 0.

1. Donner le développement limité à l’ordre 2 de eu lorsque u est au voisinage de 0.

2. En déduire qu’au voisinage de +∞, on a : fn(x) = x− n+
n2

2x
+ o
x→+∞

(
1
x

)
.

Exercice type concours.
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3. En déduire un équivalent de fn(x), puis la limite de fn(x) et celle de fn(x)− x quand x
tend vers +∞.

3. Remarques et Compléments (HORS PROGRAMME).

3.1. Développements limités d’ordres supérieurs.
Bien souvent dans la pratique, un développement limité à l’ordre 2 est une information très précieuse,

qui donne suffisamment d’informations locales pour une étude fine de la fonction. Dans certains cas
cependant, on peut avoir besoin d’une information encore plus précise.

Exemple 3.1.1. Chercher la limite en 0 de la fonction f(x) =
ex−1−x2

2
x3

.

Dans l’exemple précédent, le développement limité à l’ordre 2 en 0 de la fonction exponentielle ne
permet pas de calculer la limite : il faudrait encore pouvoir comparer le reste du développement limité
à la fonction x3 en 0. C’est ce qu’on appelle faire un développement limité à l’ordre 3. En fait, on peut
envisager de faire des développements limités à tous les ordres, pourvu que la fonction le permette.

Soit f une fonction définie au voisinage d’un point x0 et soit k un entier positif. On dit que f
admet un développement limité à l’ordre k en x0 s’il existe des réels a0, a1, · · · , ak tels que

f(x) = a0 + a1(x− x0) + a2(x− x0)2 + · · ·+ ak(x− x0)k + (x− x0)kε(x)

avec lim
x→x0

ε(x) = 0.

Définition : Développement limité à l’ordre k.

Comme dans tout ce qui précède, l’idée consiste encore à approcher la fonction f par une fonction
plus simple (cette fois-ci une fonction polynôme d’ordre k, et non plus un polynôme de degré 1 ou 2)
et de contrôler l’erreur au voisinage de x0.

Comme à l’ordre 1 ou 2, il est facile d’obtenir un développement limité d’une fonction suffisamment
dérivable à l’aide de ses dérivées au point x0.

Soit k un entier positif et soit f une fonction définie et de classe Ck au voisinage de x0. Alors

f(x) = f(x0) + f ′(x0)(x− x0) +
f ′′(x0)

2
(x− x0)2 + · · ·+ fk(x0)

k!
(x− x0)k + (x− x0)kε(x)

avec lim
x→x0

ε(x) = 0.

Théorème : Formule de Taylor-Young généralisée (hors programme).

3.2. Échelles de comparaisons.
Que faut-il penser d’une expression de la forme

f(x) =
√
x+ x+ o

x→0
(x)?

Ce n’est pas un développement limité car x 7→
√
x ne fait pas partie des fonctions que l’on peut utiliser

pour approcher f . D’autre part, de cette relation, on déduit que

f(x) ∼
x→0

√
x,

mais elle est aussi plus précise qu’un simple équivalent puisqu’elle donne une information sur le reste
f(x)−

√
x.

On constate alors qu’un développement limité dépend d’une base de données (souvent appelée
échelle de comparaison) de fonctions de référence et qu’on utilise ces fonctions (et ces fonctions seule-
ment) pour approcher la fonction à étudier.

Dans le programme de ECG2, nous avons choisi comme base de données les fonctions polynômes
d’ordre 2 puisque c’est ce type de fonctions qui sont données par le théorème de Taylor-Young. Mais
c’est un choix arbitraire et d’autres options sont possibles, comme par exemple intégrer x 7→

√
x dans

notre échelle de comparaison.
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3.3. Développements asymptotiques.
Dans l’idée du paragraphe précédent, on peut même intégrer dans nos échelles de comparaison des

fonctions qui ne sont pas définies en x0, par exemple qui tendent vers ±∞ lorsque x tend vers x0.
Dans ce cas, on produirait des expressions de la forme

f(x) =
1

x
+ 1 + x+ o

x→0
(x) .

Ce type d’expression nous est apparue naturellement pour x0 = +∞ car dans ce cas,

f(x) = ax+ b+
c

x
+ o
x→∞

(
1

x

)
n’est pas un développement limité. On appelle une telle approximation un développement asympto-
tique f en 0. Un développement asymptotique est capable de renseigner à la fois sur le comportement
local de la fonction en x0, comme dans le cas d’un développement limité, mais aussi sur sa vitesse de
divergence à l’infini comme c’est le cas dans l’exemple précédent.

4. Sujets d’annales en lien avec ce chapitre.

Très peu de sujets d’annales sont en lien direct avec ce chapitre. En fait, on trouve souvent aux
concours des exercices d’analyse de fonctions, mais il s’agit plutôt de manipuler des concepts de
première année : fonctions continues, de classe C1, C2, etc.

Les développements limités de fonctions sont utilisés fréquemment pour calculer des limites en un
point fini ou infini, ce qui est très souvent le cas dans ces exercices. Par exemple, lorsque la dérivée
en un point litigieux est à chercher (un point au bord de l’ensemble de définition ou pour lequel la
fonction est définie de manière différente), il faut calculer la limite du taux d’accroissement, et bien
souvent on s’aide d’un développement limité pour calculer cette limite.

Faire un développement limité est rarement un objectif en tant que tel, mais plutôt un outil.
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